

Selection of Tubulin & Topl Inhibitor Payloads for Improved Tumor Specific Delivery by Peptide Drug Conjugate ADC Payload Summit

May 2024

Table of Contents

- 1. Introduction
- 2. Platform Mechanism of Action
- 3. CBX-12 (alphalexTM-exatecan):
 - Tissue Selectivity
 - Preclinical Efficacy and Safety
 - Clinical Activity and Safety
- 4. CBX-15 (alphalexTM-MMAE) :
 - Effect of Release Strategy on TI
 - Tissue Selectivity
 - Preclinical Efficacy and Safety

Introduction

Program	Payload Target	Stage Of Development				Next
		Research	IND Enabling	Phase 1	Phase 2	Milestone
alphalex [™] - exatecan (CBX-12)	TOPO 1 (DNA Targeting)					Phase 2 to start in Q2 2024
alphalex [™] - MMAE (CBX-15)	Microtubule					IND submission in Q4 2024
alphalex [™] - DM4 (CBX-13)	Microtubule					Clinical candidate nomination in Q3 2025

alphalex[™]: Mechanism of Action

three components: peptide, proprietary linker, and anti-cancer agent

peptide forms an **alpha helix**

the tumor tissue by inserting the C-terminus with anti-cancer agent across the cell membrane

the drug directly into the cell cytoplasm

Tumor Targeting alphalex[™] and Clinical Translation

alphalex[™] Targets Tumors and Sporadic Lymph Node Mets in a Lymphoma Mouse Model

kidney

Paralkar et al. 2019 AACR

subcutaneous tumor

control A750-pHLIP

alphalex[™] targets clusters of tumor cells in lymph nodes

Cheng et al. 2015 Nature 518(7537)

alphalex[™] Targets Lesions and Micrometastases in Human Bladder Cancers ex vivo

Non-invasive urothelial carcinom

Golijanin et al. 2016 PNAS 113(42)

Efficacy of ADCs In Vivo: Antigen Positive Cancer Cell Uptake

Adapted from Deonarain et al. 2018 Antibodies

Tsuchikama and An 2018 *Protein Cell* Hamblett, K. J. et. al. Cancer Res. 2015, 75, 5329

Alphalex[™] has 50X improved tumor penetration relative to ADCs

CBX-12 Clinical Compound

H-

H-H-11

.o.H

CBX-12: Tumor Selective Targeting and WH Release

CBX-12: Efficacy in Preclinical Models

NON-CONFIDENTIAL

Preclinical Models Demonstrated Efficacy as Monotherapy and Combinations

CBX-12-101: Duration on Study

March 2024

- Patients continuing on study for over 15 months
- Recommended schedule once every 21 day dosing
- Responses observed in several tumor types including ovarian, breast, NSCLC, others

CBX-12 has Superior Tolerability Over ADCs or Unconjugated Chemotherapies

Preferable Toxicity Profile

No interstitial lung disease or ocular toxicity in phase 1 study

Minimal GI toxicity

Myelosuppression is the dose limiting toxicity

Manageable neutropenia, anemia, and thrombocytopenia

Allows for a **4-5 fold increase** in administration of warhead compared to unconjugated exatecan

CBX-15 IND Candidate

H-

H-H-11

.o.H

Path to Lead Conjugate: Linker is Not Trivial!

Path to Lead Conjugate: Linker is Not Trivial!

Finding the Right Balance of Release Profile

CBX-15 Tumor Targeting of MMAE

H-H-11

H-

.0-H

CBX-15 Selectively Delivers MMAE to Tumor and Avoids Healthy Tissues, Unlike Unconjugated MMAE

CBX-15 demonstrates selective release of MMAE in tumor with no release in healthy tissues or plasma (inset displays expanded axis of MMAE from CBX-15 in plasma).

CYBREXA

CBX-15: Tissue Selectivity versus MMAE Warhead

Targeted delivery to tumor and avoidance of toxicity to normal tissues

CBX-15 Avoids the Bone Marrow Toxicity of an Equimolar Dose of Unconjugated MMAE in the Mouse

Nude mice were administered equimolar 2.4µmoles/kg doses of CBX-15 (10mg/kg) or NON-CONFIDENT unconjugated MMAE (1.7mg/kg); femoral bone marrow was assayed at time points indicated.

CBX-15 Efficacy in Mouse Xenograft Tumor Models

H-

H-H-11

.0-H

CBX-15: Tumor Suppression in Multiple Models

Preclinical models demonstrate efficacy as monotherapy with multiple dosing paradigms.

CBX-15: Rapid Regression of Large H1975 NSCLC Tumors

Immediate and Rapid Regression of Large Tumors after CBX-15 Dose

NON-CONFIDENTIAL

CYBREXA

Thank you

5 Science Park 395 Winchester Ave. New Haven, CT 06511 860.717.2731

www.cybrexa.com